Stimulation within the cuneate nucleus suppresses synaptic activation of climbing fibers

نویسندگان

  • Pontus Geborek
  • Henrik Jörntell
  • Fredrik Bengtsson
چکیده

Several lines of research have shown that the excitability of the inferior olive is suppressed during different phases of movement. A number of different structures like the cerebral cortex, the red nucleus, and the cerebellum have been suggested as candidate structures for mediating this gating. The inhibition of the responses of the inferior olivary neurons from the red nucleus has been studied extensively and anatomical studies have found specific areas within the cuneate nucleus to be target areas for projections from the magnocellular red nucleus. In addition, GABA-ergic cells projecting from the cuneate nucleus to the inferior olive have been found. We therefore tested if direct stimulation of the cuneate nucleus had inhibitory effects on a climbing fiber field response, evoked by electrical stimulation of the pyramidal tract, recorded on the surface of the cerebellum. When the pyramidal tract stimulation was preceded by weak electrical stimulation (5-20 μA) within the cuneate nucleus, the amplitude of the climbing fiber field potential was strongly suppressed (approx. 90% reduction). The time course of this suppression was similar to that found after red nucleus stimulation, with a peak suppression occurring at 70 ms after the cuneate stimulation. Application of CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, disodium salt) on the cuneate nucleus blocked the suppression almost completely. We conclude that a relay through the cuneate nucleus is a possible pathway for movement-related suppression of climbing fiber excitability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmission security for single, hair follicle-related tactile afferent fibers and their target cuneate neurons in cat.

Transmission from single, identified hair follicle afferent (HFA) nerve fibers to their target neurons of the cuneate nucleus was examined in anesthetized cats by means of paired recording from individual cuneate neurons and from fine, intact fascicles of the lateral branch of the superficial radial nerve in which it is possible to identify and monitor the activity of each group II fiber. Selec...

متن کامل

Transmission security for single kinesthetic afferent fibers of joint origin and their target cuneate neurons in the cat.

Transmission between single identified, kinesthetic afferent fibers of joint origin and their central target neurons of the cuneate nucleus was examined in anesthetized cats by means of paired electrophysiological recording. Fifty-three wrist joint afferent-cuneate neuron pairs were isolated in which the single joint afferent fiber exerted suprathreshold excitatory actions on the target cuneate...

متن کامل

Postsynaptic dorsal column pathway of the rat. III. Distribution of ascending afferent fibers.

The distribution in the dorsal column nuclei (DCn) of post-synaptic dorsal column (PSDC) fibers was examined in rats following injections of Phaseolus vulgaris leucoagglutinin (PHA-L) in the spinal cord. Lemniscal neurons in the DCn were retrogradely labeled in the same animals by injecting the thalamus with Fluoro-Gold. In some experiments, primary afferent fibers were also labeled by injectin...

متن کامل

Morphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L

Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...

متن کامل

A Realistic Computational Model of the Local Circuitry of the Cuneate Nucleus

Intracellular recordings obtained under cutaneous and lemniscal stimulation show that the afferent fibers can establish excitatory and inhibitory synaptic connections with cuneothalamic neurons [5]. In addition, distinct types of recurrent collaterals with the capability of either exciting or inhibiting both cuneothalamic neurons and interneurons were also discovered [6]. With these data we hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012